Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord.
نویسندگان
چکیده
The central pattern generator for locomotion in the spinal cord of the lamprey can be activated in vitro by the addition of D-glutamate to the bathing saline. Serotonin has no effects when bath-applied alone, but it modulates the D-glutamate-activated swimming pattern. Three major effects are observed: a dose-dependent reduction in the frequency of rhythmic ventral root burst discharge; enhancement of the intensity of burst discharge, due in part to the recruitment of previously inactive motoneurones; prolongation of the intersegmental phase lag. Motoneurone activation appears to result from enhanced synaptic drive from the central pattern generator; no direct effects of serotonin on the motoneurones themselves (resting potential, input resistance or threshold for action potential generation) were observed. Theoretical and experimental studies suggest that the prolongation of the intersegmental phase lag results at least in part from differential effects of serotonin on segmental oscillators in different parts of the spinal cord. Isolated caudal pieces of the cord were more strongly affected by serotonin than isolated rostral pieces. We propose that serotonin may be an endogenous modulator of the central pattern generator for locomotion in the lamprey. It may have a role in the generation of a family of related undulatory movements (swimming, crawling, burrowing) by a single central pattern generator.
منابع مشابه
Functional regeneration following spinal transection demonstrated in the isolated spinal cord of the larval sea lamprey.
Axons in the larval sea lamprey can regenerate across the site of a spinal cord transection and form functioning synapses with some of their normal target neurons. The animals recover normal-appearing locomotion, but whether the regenerating axons and their synaptic connections are capable of playing a functional role during this behavior is unknown. To test this, "fictive" swimming was induced...
متن کاملTowards a Spinal Neuroprosthesis: Restoring Locomotion after Spinal Cord Injury
The overall goal of this work is to develop the core framework for an implantable neuroprosthetic device that can restore locomotion after a severe spinal cord injury (SCI) causes paralysis. Our approach to this problem relies on a combination of the biological central pattern generator (CPG) for locomotion and an artificial silicon CPG. In particular, we propose that an artificial CPG can be u...
متن کاملImpact of movement and movement-related feedback on the lamprey central pattern generator for locomotion.
A semi-reduced, minimally restrained lamprey preparation was used to investigate the impact of movement and movement-related feedback during D-glutamate-induced locomotion. The preparation consisted of the trunk alone with the spinal cord exposed to the bathing solution. Two conditions were compared using electromyography or nerve recording: (i) muscle and spinal cord, (ii) spinal cord alone su...
متن کاملSerotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord.
The interneuron populations that constitute the central pattern generator (CPG) for locomotion in the mammalian spinal cord are not well understood. We studied the properties of a set of commissural interneurons whose axons cross and ascend in the contralateral cord (aCINs) in the neonatal mouse. During N-methyl-D-aspartate (NMDA) and 5-HT-induced fictive locomotion, a majority of lumbar (L2) a...
متن کامل5-HT prolongs ventral root bursting via presynaptic inhibition of synaptic activity during fictive locomotion in lamprey.
Locomotor pattern generation is maintained by integration of the intrinsic properties of spinal central pattern generator (CPG) neurons in conjunction with synaptic activity of the neural network. In the lamprey, the spinal locomotor CPG is modulated by 5-HT. On a cellular level, 5-HT presynaptically inhibits synaptic transmission and postsynaptically inhibits a Ca2+-activated K+ current respon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 116 شماره
صفحات -
تاریخ انتشار 1985